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Abstract 1 

A framework for quantifying precipitation distributions at regional scales is presented and 2 

applied to CMIP 5 and 6 models. We employ the IPCC AR6 climate reference regions 3 

over land and propose refinements to the oceanic regions based on the homogeneity of 4 

precipitation distribution characteristics. The homogeneous regions are identified as 5 

heavy, moderate, and light precipitating areas by K-means clustering of IMERG 6 

precipitation frequency and amount distributions. With the global domain partitioned into 7 

62 regions, including 46 land and 16 ocean regions, we apply 10 established precipitation 8 

distribution metrics. The collection includes metrics focused on the maximum peak, lower 9 

10th percentile, and upper 90th percentile in precipitation amount and frequency 10 

distributions, the similarity between observed and modeled frequency distributions, an 11 

unevenness measure based on cumulative amount, average total intensity on all days 12 

with precipitation, and number of precipitating days each year. We apply our framework 13 

to 25 CMIP5 and 41 CMIP6 models, and 6 observation-based products of daily 14 

precipitation. Our results indicate that many CMIP 5 and 6 models substantially 15 

overestimate the observed light precipitation amount and frequency as well as the number 16 

of precipitating days, especially over mid-latitude regions outside of some land regions in 17 

the Americas and Eurasia. Improvement from CMIP 5 to 6 is shown in some regions, 18 

especially in mid-latitude regions, but it is not evident globally, and over the tropics most 19 

metrics point toward over degradation. 20 

 21 
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1. Introduction 22 

Precipitation is a fundamental characteristic of the Earth’s hydrological cycle and one that 23 

can have large impacts on human activity. The impact of precipitation depends on its 24 

intensity and frequency characteristics (e.g., Trenberth et al. 2003; Sun et al. 2006; 25 

Trenberth and Zhang 2018). Even with the same amount of precipitation, more intense 26 

and less frequent rainfall is more likely to lead to extreme precipitation events such as 27 

floods and drought compared to less intense and more frequent rainfall. While mean 28 

precipitation has improved in Earth system models, the precipitation distributions continue 29 

to have biases (e.g., Dai 2006; Fiedler et al. 2020), which limits the utility of these 30 

simulations, especially at the level of accuracy that is increasingly demanded in order to 31 

anticipate and adapt to changes in precipitation due to global warming. 32 

  33 

Multi-model intercomparison with a well-established diagnosis framework facilitates 34 

identifying common model biases and sometimes yields insights into how to improve 35 

models. The Coupled Model Intercomparison Project (CMIP; Meehl et al. 2000, 2005, 36 

2007; Taylor et al. 2012; Eyring et al. 2016) is a well-established experimental protocol to 37 

intercompare state-of-the-art Earth system models, and the number of models and 38 

realizations participating in CMIP has been growing through several phases from 1 39 

(Meehl et al. 2000) to 6 (Eyring et al. 2016). Given the increasing number of models, 40 

developed at higher resolution and with increased complexity, modelers and analysts 41 

could benefit from capabilities that help synthesize the consistency between observed 42 

and simulated precipitation. Pendergrass et al. (2020) envisioned a framework for both 43 

baseline and exploratory precipitation benchmarks, and Leung et al. (2022) described 44 
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efforts to advance exploratory objective evaluation for simulated precipitation focusing on 45 

process-oriented and phenomena-based metrics at a variety of spatiotemporal scales. 46 

The baseline precipitation benchmark metrics target established measures of the mean 47 

state, the seasonal and diurnal cycles, variability across timescales, intensity/frequency 48 

distributions, extremes, and drought. The current study provides a framework focused on 49 

precipitation distributions.  50 

 51 

Diagnosing precipitation distributions and formulating metrics that extract critical 52 

information from precipitation distributions have been addressed in many previous studies. 53 

Pendergrass and Deser (2017) proposed several precipitation distribution metrics based 54 

on frequency and amount distribution curves. The precipitation frequency distribution 55 

quantifies how often rain occurs at different rain rates, whereas the precipitation amount 56 

distribution quantifies how much rain falls at different rain rates. Based on the distribution 57 

curves, Pendergrass and Deser (2017) extracted rain frequency peak and amount peak 58 

where the maximum non-zero rain frequency and amount occur, respectively. 59 

Pendergrass and Knutti (2018) introduced a metric that measures the unevenness of daily 60 

precipitation based on the cumulative amount curve. Their unevenness metric is defined 61 

as the number of wettest days that constitute half of the annual precipitation. In the 62 

median of station observations equatorward of 50° latitude, half of the annual precipitation 63 

falls in only about the heaviest 12 days, and generally models underestimate the 64 

observed unevenness (Pendergrass and Knutti 2018). In addition, several metrics have 65 

been developed to distill important precipitation characteristics, such as the fraction of 66 

precipitating days and simple daily intensity index (SDII, Zhang et al. 2011). In this study 67 

4

https://doi.org/10.5194/egusphere-2022-1106
Preprint. Discussion started: 6 December 2022
c© Author(s) 2022. CC BY 4.0 License.



 

we implement all these well-established metrics and several other complementary metrics 68 

into our framework. 69 

 70 

Many studies have analyzed the precipitation distributions over large domains (e.g., Dai 71 

2006; Pendergrass and Hartmann 2014; Ma et al. 2022). Often, these domains comprise 72 

both heavily precipitating and dry regions. Given the emphasis on regional scale analysis 73 

continues to grow as models’ horizontal resolution increases, interpretation of domain-74 

averaged distributions could be simplified by defining regions that are not overly complex 75 

or heterogeneous in terms of their precipitation distribution characteristics. Iturbide et al. 76 

(2020) has identified climate reference regions that have been adopted in the sixth 77 

assessment report (AR6) of the Intergovernmental Panel on Climate Change (IPCC). Our 78 

framework is based on these IPCC AR6 reference regions for objective examination of 79 

precipitation distributions over land. Over the ocean we have revised some of the regions 80 

of Iturbide et al. (2020) to better isolate homogeneous precipitation distribution 81 

characteristics. 82 

 83 

In this study, we propose a framework for regional scale quantification of simulated 84 

precipitation distributions and evaluate CMIP 5 and 6 models with multiple observations. 85 

The remainder of the paper is organized as follows: Sections 2 and 3 describe the data 86 

and analysis methods. Section 4 presents results including the application and 87 

modification of IPCC AR6 climate reference regions, evaluation of CMIP models, and 88 

their improvement across generations. Sections 5 and 6 discuss and summarize the main 89 

accomplishments and findings from this study.   90 
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 91 

 92 

2. Data 93 

2.1. Observational data 94 

For reference data, we use six global daily precipitation products first made available as 95 

part of the Frequent Rainfall Observations on GridS (FROGS) database (Roca et al., 2019) 96 

and then further aligned with CMIP output via the data specifications of the Observations 97 

for Model Intercomparison Project (Obs4MIPs, Waliser et al. 2020). These include five 98 

satellite-based products and a recent atmospheric reanalysis product. The satellite-based 99 

precipitation products include the Integrated Multi-satellitE Retrievals for GPM version 6 100 

final run product (Huffman et al. 2020; hereafter IMERG), the Tropical Rainfall Measuring 101 

Mission Multi-satellite Precipitation Analysis 3B42 version 7 product (Huffman et al. 2007; 102 

hereafter TRMM), the bias-corrected Climate Prediction Center Morphing technique 103 

product (Xie et al. 2017; hereafter CMORPH), the Global Precipitation Climatology Project 104 

1DD version 1.3 (Huffman et al. 2001; hereafter GPCP), and Precipitation Estimation from 105 

Remotely Sensed Information using Artificial Neural Networks (Ashouri et al. 2015; 106 

hereafter PERSIANN). The reanalysis product included for context is the ECMWF’s fifth 107 

generation of atmospheric reanalysis (Hersbach et al. 2020; hereafter ERA5). Table 1 108 

summarizes the observational datasets with the data source, coverage of domain and 109 

period, resolution of horizontal space and time frequency, and references. We use the 110 

data periods available via FROGS and Obs4MIPs as follows: 2001-2020 for IMERG, 111 

1998-2018 for TRMM, 1998-2012 for CMORPH, 1997-2020 for GPCP, 1984-2018 for 112 

PERSIANN, and 1979-2018 for ERA5. 113 
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 114 

2.2. CMIP model simulations 115 

We analyze daily precipitation from all realizations of AMIP simulations available from   116 

CMIP5 (Taylor et al. 2012) and CMIP6 (Eyring et al. 2016). We have chosen to 117 

concentrate our analysis on AMIP simulations rather than the coupled Historical 118 

simulations because the simulated precipitation in the latter is strongly influenced by 119 

biases in the modeled sea surface temperature, complicating any interpretation regarding 120 

the underlying causes of the precipitation errors. Table 2 lists the participating models, 121 

the number of realizations, and the horizontal resolution in each modeling institute. We 122 

evaluate the most recent 20 years (1985-2004) that both CMIP 5 and 6 models have in 123 

common for a fair comparison with satellite-based observations. 124 

 125 

 126 

3. Methods 127 

In our framework we apply 10 metrics that characterize different and complementary 128 

aspects of the intensity distribution of precipitation at regional scales. Table 3 summarizes 129 

the metrics including their definition, purpose, and references. The computation of the 130 

metrics has been implemented and applied in an open source metrics package, the 131 

Program for Climate Model Diagnosis & Intercomparison (PCMDI) metrics package (PMP; 132 

Gleckler et al. 2008, 2016).  133 

 134 

3.1. Frequency and amount distributions  135 
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Following Pendergrass and Hartmann (2014) and Pendergrass and Deser (2017), we use 136 

logarithmically-spaced bins of daily precipitation to calculate both the precipitation 137 

frequency and amount distributions. Each bin is 7% wider than the previous one, and the 138 

smallest non-zero bin is centered at 0.03 mm/day. The frequency distribution is the 139 

number of days in each bin normalized by the total number of days, and the amount 140 

distribution is the sum of accumulated precipitation in each bin normalized by the total 141 

number of days. Based on these distributions (Fig. 1a), we identify the rain rate where the 142 

maximum peak of the distribution appears (Amount/Frequency Peak, Pendergrass and 143 

Deser 2017; also called mode, Kooperman et al., 2016) and formulate several 144 

complementary metrics that measure the fraction of the distribution lower 10 percentile 145 

(P10) and upper 90 percentile (P90). The precipitation bins less than 0.1 mm/day are 146 

considered dry for the purpose of these calculations. The threshold rain rates for 10th and 147 

90th percentiles are defined from the amount distribution as determined from 148 

observations. Here we use IMERG as the default reference observational dataset. The 149 

final frequency related metric we employ is the Perkins score, which measures the 150 

similarity between observed and modeled frequency distributions (Perkins et al. 2007). 151 

With the sum of a frequency distribution across all bins being unity, the Perkins score is 152 

defined as the sum of minimum values between observed and modeled frequency across 153 

all bins: 𝑃𝑒𝑟𝑘𝑖𝑛𝑠 𝑆𝑐𝑜𝑟𝑒 = ∑𝑛
1 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑍𝑜 , 𝑍𝑚) where 𝑛 is the number of bins, 𝑍𝑜 and 154 

𝑍𝑚 are the frequency in a given bin for observation and model, respectively. The Perkins 155 

score is a unitless scalar varying from 0 (low similarity) to 1 (high similarity). 156 

 157 

3.2. Cumulative fraction of annual precipitation amount  158 
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Following Pendergrass and Knutti (2018), we calculate the cumulative sum of daily 159 

precipitation each year sorted in descending order (i.e., wettest to driest) and normalized 160 

by the total precipitation for that year. From the distribution for each individual year (see 161 

Fig. 1b), we obtain the metrics gauging the number of the wettest days for half of annual 162 

precipitation (Unevenness, Pendergrass and Knutti 2018) and the fraction of the number 163 

of precipitating (>=1mm/day) days (FracPRdays). To facilitate comparison against longer-164 

established analyses (e.g., ETCCDI, Zhang et al., 2011),  we include the daily 165 

precipitation intensity, calculated by dividing the annual total precipitation by the number 166 

of precipitating days (SDII, Zhang et al. 2011). To obtain values of these metrics over 167 

multiple years, we take the median across years following Pendergrass and Knutti (2018; 168 

for unevenness). 169 

 170 

3.3. Reference regions  171 

We use the spatial homogeneity of precipitation characteristics as a basis for defining 172 

regions, as in previous studies (e.g., Swenson and Grotjahn 2019). In addition to 173 

providing more physically-based results, this also simplifies interpretation with robust 174 

diagnostics when we average a distribution characteristic across the region. We use K-175 

means clustering (MacQueen 1967) with the concatenated frequency and amount 176 

distributions of IMERG over the global domain to identify homogeneous regions for 177 

precipitation distributions. K-means clustering is an unsupervised machine learning 178 

algorithm that separates characteristics of a given dataset into a specified number of 179 

groups, which has been widely used because it is faster and simpler than other methods. 180 

Figure 2 shows the spatial pattern of IMERG precipitation mean state and clustering 181 

9

https://doi.org/10.5194/egusphere-2022-1106
Preprint. Discussion started: 6 December 2022
c© Author(s) 2022. CC BY 4.0 License.



 

results with 3 clusters identified by the algorithm (Fig. 2b) including heavy (blue), 182 

moderate (green), and light (orange) precipitation regions. The spatial pattern of these 183 

clustering regions resembles the pattern of the mean state of precipitation, providing a 184 

sanity check indicating that the cluster-based regions are physically reasonable. 185 

 186 

In support of the AR6, the IPCC proposed a set of climate reference regions (Iturbide et 187 

al. 2020). These regions were defined based on geographical and political boundaries 188 

and the climatic consistency of temperature and precipitation in current climate and 189 

climate change projections. When defining regions, the land regions use both information 190 

from current climate and climate change projections, while the ocean regions use only 191 

the information from climate change projections. In other words, the climatic consistency 192 

of precipitation in the current climate is not explicitly represented in the definition of the 193 

oceanic regions. Figure 3a shows the IPCC AR6 climate reference regions superimposed 194 

on our precipitation clustering regions shown in Fig. 2b. The land regions correspond 195 

reasonably well to the clustering regions, but some ocean regions are too broad, including 196 

both heavy and light precipitating regions (Fig. 3a). In this study, the ocean regions are 197 

modified based on the clustering regions, while the land regions remain the same as in 198 

the AR6 (Fig. 3b). 199 

 200 

In the Pacific Ocean region, the original IPCC AR6 regions consist of equatorial Pacific 201 

Ocean (EPO), northern Pacific Ocean (NPO), and southern Pacific Ocean (SPO). Each 202 

of these regions includes areas of both heavy and light precipitation. EPO includes the 203 

Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), 204 
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and also the dry southeast Pacific region. The NPO region includes the north Pacific storm 205 

track and the dry northeast Pacific. The SPO region includes the southern part of SPCZ 206 

and the dry southeast area of the Pacific. In our modified IPCC AR6 regions, the Pacific 207 

Ocean region is divided into four heavy precipitating regions (NPO, NWPO, PITCZ, and 208 

SWPO) and two light and moderate precipitating regions (NEPO and SEPO). The NPO, 209 

NWPO, PITCZ, and SWPO mainly include the North Pacific storm track region, the 210 

western Pacific warm pool region, pacific ITCZ, and SPCZ, respectively. The NEPO and 211 

SEPO respectively include the northeast and southeast dry Pacific regions. Similarly, in 212 

the Atlantic Ocean region, the original IPCC AR6 regions consist of the equatorial Atlantic 213 

Ocean (EAO), northern Atlantic Ocean (NAO), and southern Atlantic Ocean (SAO), with 214 

each including both heavy and light precipitating regions. Our modified Atlantic Ocean 215 

region consists of two heavy precipitating regions (NAO and AITCZ) and two light and 216 

moderate precipitating regions (NEAO and SAO). The NAO and AITCZ mainly include 217 

the North Atlantic storm track region and Atlantic ITCZ, respectively. The NEAO and SAO 218 

mainly include dry eastern Atlantic regions. The Indian Ocean (IO) region is not modified 219 

as the original IPCC AR6 climate reference region separates well the heavy precipitating 220 

equatorial IO (EIO) region from the moderate and light precipitating southern IO (SIO) 221 

region. The Southern Ocean (SOO) is modified to mainly include the heavy precipitation 222 

region around the Antarctic. The original IPCC AR6 climate reference regions consist of 223 

58 regions including 12 oceanic regions and 46 land regions, while our modification 224 

consists of 62 regions including 16 oceanic regions and the same land regions as the 225 

original (see Table 4). Note that the Caribbean (CAR), the Mediterranean (MED), and 226 

Southeast Asia (SEA) are not counted for the oceanic regions.  227 
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 228 

3.4. Evaluating model performance 229 

We use two simple measures to compare the collection of CMIP 5 and 6 model 230 

simulations with the five satellite-based observational products (IMERG, TRMM, 231 

CMORPH, GPCP, and PERSIANN). One gauges how many models within the multi-232 

model ensemble fall within the observational range between the minimum and maximum 233 

observed values for each metric and each region. Another is how many models 234 

underestimate or overestimate all observations, i.e., are outside the bounds spanned by 235 

the minimum and maximum values across the five satellite-based products. To quantify 236 

the dominance of underestimation versus overestimation of the multi-model ensemble 237 

with a single number, we use the following measure formulation: (𝑛𝑂 − 𝑛𝑈)/𝑛𝑇 where 𝑛𝑂 238 

is the number of overestimating models, 𝑛𝑈 is the number of underestimating models, 239 

and 𝑛𝑇 is the total number of models. Thus, positive values represent overestimation, and 240 

negative values represent underestimation. If models are mostly within the observational 241 

range or widely distributed from underestimation to overestimation, the quantification 242 

value would approach zero.  243 

 244 

Many metrics that can be used to characterize precipitation, including those used here, 245 

are sensitive to the spatial and temporal resolutions at which the model and observational 246 

data are analyzed (e.g., Pendergrass and Knutti 2018, Chen and Dai 2019). As in many 247 

previous studies the diagnosis of precipitation in CMIP 5 and 6 models (e.g., Fiedler et al. 248 

2020; Tang et al. 2021; Ahn et al. 2022), to ensure appropriate comparisons, we conduct 249 

all analyses at a common horizontal grid of 2x2 degrees with a conservative regridding 250 
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method. For models with multiple ensemble members, we first compute the metrics for 251 

all available realizations and then average the results across the realizations. 252 

 253 

 254 

4. Results 255 

4.1. Homogeneity within reference regions  256 

For the regional scale analysis, we employ the IPCC AR6 climate reference regions 257 

(Iturbide et al. 2020) while we revise the region dividings over the oceans based on 258 

clustered precipitation characteristics as described in section 3.3. To quantitatively 259 

evaluate the homogeneity of precipitating distributions in the reference regions, we use 260 

three homogeneity metrics: the Perkins score (Perkins et al. 2007), Kolmogorov–Smirnov 261 

test (K-S test, Chakravart et al. 1967), and Anderson-Darling test (A-D test, Stephens 262 

1974). The three metrics measure the similarity between the regionally-averaged and 263 

individual grid cell frequency distributions within the region. The Perkins score measures 264 

the overall similarity between two frequency distributions, which is one of our distribution 265 

performance metrics described in Section 3.1. The K-S and A-D tests focus more on the 266 

similarity in the center and the side of the frequency distribution, respectively. The three 267 

homogeneity metrics could complement each other as their main focuses are on different 268 

aspects of frequency distributions.  269 

 270 

In the original IPCC AR6 reference regions, the oceanic regions show relatively low 271 

homogeneity of precipitating characteristics compared to land regions (Fig. 4). The Pacific 272 

and Atlantic Ocean regions show much lower homogeneity than the Indian Ocean, 273 
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especially in EPO and EAO regions. In the modified oceanic regions, the homogeneities 274 

show an overall improvement with the three homogeneity metrics. In particular, the 275 

homogeneity over the heavy precipitating regions where the homogeneity was lower (e.g., 276 

Pacific and Atlantic ITCZ and mid-latitude storm track regions) are largely improved. The 277 

clustering regions shown here are obtained based on IMERG precipitation. However, 278 

since different satellite-based products show substantial discrepancies in precipitation 279 

distributions, it is important to assess whether the improved homogeneity in the modified 280 

regions is similarly improved across other different datasets. Figure 5 shows the 281 

homogeneity of precipitation distribution characteristics for different observational 282 

datasets using the Perkins score. Although the region modifications we have made are 283 

based on the clustering regions of IMERG precipitation, Fig. 5 suggests that the 284 

improvement of the homogeneity over the modified regions is consistent across different 285 

observational datasets. We further tested the homogeneity for different seasons (see Fig. 286 

S1 in the supplement material). The homogeneity is overall improved in the modified 287 

regions across the seasons even though we defined the reference regions based on 288 

annual data. 289 

 290 

4.2. Regional evaluation of model simulations against multiple observations  291 

The precipitation distribution metrics used in this study are mainly calculated  from three 292 

curves: amount distribution, frequency distribution, and cumulative amount fraction 293 

curves. Figure 6 shows these curves for three selected regions based on the clustered 294 

precipitating characteristics (NWPO, which is a heavy precipitation dominated ocean 295 

region; SEPO, a light precipitation dominated ocean region; and ENA, a heavy 296 
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precipitation dominated land region). The heavy and light precipitating regions are well 297 

distinguished by their overlaid distribution curves. The amount distribution has a 298 

distinctive peak in the heavy precipitating region (Figs. 6a and 6g), while it is flatter in the 299 

light precipitating region (Fig. 6d). The frequency distribution is more centered on the 300 

heavier precipitation side in the heavy precipitating region (Figs. 6b, 6h) than in the light 301 

precipitating region (Fig 6e). The cumulative fraction increases more steeply in the light 302 

precipitating region (Fig. 6f) than in the heavy precipitating region (Figs. 6c and 6i), 303 

indicating there are fewer precipitating days in the light precipitating region. NWPO and 304 

SEPO were commonly averaged for representing the tropical ocean region in many 305 

studies, but these different characteristics in the precipitation distributions demonstrate 306 

the additional information available via a regional scale analysis. Although satellite-based 307 

observations are less reliable over the light precipitating ocean regions (e.g., SEPO), the 308 

differences between heavy and light precipitation regions are well distinguishable. 309 

 310 

In the precipitation frequency distribution, many models show a bimodal distribution in the 311 

heavy precipitating tropical ocean region (Fig. 6b) but not in the light precipitating 312 

subtropical ocean region (Fig. 6e) or the heavy precipitating mid-latitude land region (Fig. 313 

6h). The bimodal frequency distribution is a commonly found in models and is seemingly 314 

independent of resolution (e.g., Lin et al. 2013; Kooperman et al. 2018; Chen et al. 2021; 315 

Ma et al. 2022; Martinez-Villalobos et al. 2022). It is not generally found in satellite-based 316 

observational datasets, but this could be because the range of sensitivity to precipitation 317 

rates is too narrow. Ma et al. (2022) compared the frequency distributions in AMIP and 318 

HighResMIP (High Resolution Model Intercomparison Project, Haarsma et al. 2016) from 319 
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CMIP6 and DYAMOND (DYnamics of the Atmospheric general circulation Modeled On 320 

Non-hydrostatic Domains, Satoh et al. 2019; Stevens et al. 2019) models, where they 321 

showed that the bimodal frequency distribution appears in many AMIP (~100km), 322 

HighResMIP (~50km), and even DYAMOND (~4km) models. Convective 323 

parameterizations have been speculated as a cause of the light rain frequency peak (Lin 324 

et al. 2013; Kooperman et al. 2018; Chen et al. 2021), though some models show a 325 

convective precipitation peak at heavier precipitation than the peak from large-scale 326 

precipitation (Martinez-Villalobos et al. 2022). ERA5 reanalysis also shows a bimodal 327 

frequency distribution (Fig. 6b), which is not surprising considering that the reproduced 328 

precipitation in ERA5 heavily depends on the model, thus exhibits this common model 329 

behavior. Because of the heavy reliance on model physics to generate its precipitation 330 

(as opposed to fields like wind, for which observations are directly assimilated), in this 331 

study we do not include ERA5 precipitation among the observational products used for 332 

model evaluation. 333 

 334 

Based on the precipitation amount, frequency, and cumulative amount fraction curves, 335 

we calculate 10 metrics (Amount peak, Amount P10, Amount P90, Frequency peak, 336 

Frequency P10, Frequency P90, Unevenness, FracPRdays, SDII, and Perkins score) as 337 

described in Section 3. Figure 7 shows the metrics with the modified IPCC AR6 climate 338 

reference regions for satellite-based observations (black), ERA5 (gray), CMIP5 (blue), 339 

and CMIP6 (red) models. The metric values vary widely across regions, especially in 340 

Amount peak, Frequency peak, Unevenness, FracPRdays, and SDII, demonstrating  the 341 

additional detail provided by regional-scale precipitation-distribution metrics. In terms of 342 
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the metrics based on the amount distribution (Fig. 7a-c), many models tend to simulate 343 

an Amount peak that is too light, an Amount P10 that is too high, and an Amount P90 that 344 

is too low compared to the observations, moreso in oceanic regions (regions 47-62) than 345 

in land regions. Similarly for the metrics based on the frequency distribution (Fig. 7d-f), 346 

many models show light Frequency peaks, overestimated Frequency P10, and 347 

underestimated Frequency P90 compared to observations. The similarity between 348 

frequency distribution curves (i.e., Perkins score) is higher in land regions than in ocean 349 

regions. Also, many models overestimate Unevenness and FracPRdays and 350 

underestimate SDII. These results indicate that overall, models simulate more frequent 351 

weak precipitation and less heavy precipitation compared to the observations, consistent 352 

with many previous studies (e.g., Dai 2006; Pendergrass and Hartmann 2014; Trenberth 353 

et al. 2017; Chen et al. 2021; Ma et al. 2022).  354 

 355 

As expected from previous work, observations disagree substantially in some regions 356 

(e.g., polar and high latitude regions) and/or for some metrics (e.g., Amount P90, 357 

Frequency P90). In some cases the observational spread is much larger than that of the 358 

models. We examine the observational discrepancy or spread by the ratio between the 359 

standard deviation of the five satellite-based observations (IMERG, TRMM, CMORPH, 360 

GPCP, PERSIANN) and the standard deviation of all CMIP 5 and 6 models (Fig. 8). The 361 

standard deviation of observations is much larger near polar regions and high latitude 362 

regions compared to the models’ standard deviation for most metrics, as expected from 363 

the orbital configurations of the most relevant satellite constellations for precipitation 364 

(which exclude high latitudes). The Amount P90 and Frequency P90 metrics show the 365 
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largest observational discrepancy among the metrics, with standard deviations of 1.5 to 366 

3 times larger over some high latitude regions and about 3-8 times larger over polar 367 

regions in observations compared to the models. On the other hand, Unevenness, 368 

FracPRdays, and Amount P10 show the least observational discrepancy – the models’ 369 

standard deviation is about 2-8 times larger than for observations over some tropical and 370 

subtropical regions; nonetheless, the standard deviation among observations is larger 371 

over most of the high latitude and polar regions. Model evaluation in the regions with large 372 

disagreement among observational products remains a challenge. Note that the standard 373 

deviation of five observations would be sensitive as there are outlier observations for 374 

some regions and metrics (e.g., many ocean regions in Amount P90). Moreover, 375 

observational uncertainties are rarely well quantified or understood, so agreements 376 

among observational datasets may not always allow us to rule out common errors among 377 

observations (e.g., for warm light precipitation over the subtropical ocean).   378 

 379 

To attempt to account for discrepancies among observational datasets in the model 380 

evaluation framework, we use two different approaches to evaluate model performance 381 

with multiple observations, as described in Section 3.4. The first approach is to assess 382 

the number of models that are within the observational range. Figure 9 shows the CMIP6 383 

model evaluation with each metric, and the regions where the standard deviation among 384 

observations is larger than among models are stippled gray to avoid them from the model 385 

performance evaluation. In Amount peak, some subtropical regions (e.g., ARP, EAS, 386 

NEPO, CAU, and WSAF) show relatively good model performance (more than 70% of 387 

models fall in the observational range), while some tropical and subtropical (e.g., PITCZ, 388 
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AITCZ, and SEPO) and polar (e.g., RAR, EAN, and WAN) regions show poor model 389 

performance (less than 30% of models fall in observational range). For Amount P10, 390 

many regions are poorly captured by the simulations, except for some subtropical land 391 

regions (e.g., EAS, NCA, CAU, and WSAF). In Amount P90, most regions are uncertain 392 

(i.e., the standard deviation among observations is larger than among models) making it 393 

difficult to evaluate model performance, while some tropical regions near the Indo-Pacific 394 

warmpool (EIO, SEA, NWPO, and NAU) exhibit very good model performance (more than 395 

90% of models fall in observational range). In the Frequency metrics (peak, P10, and 396 

P90), more regions are difficult to evaluate model performance than in Amount metrics, 397 

while in some tropical and subtropical regions (e.g., PITCZ, SWPO, NWPO, SEA, SAO, 398 

and NES) model performance is good. However, good model performance could 399 

alternatively arise from a large observational range (see Fig. 7). Unevenness, 400 

FracPRdays, SDII, and Perkins score have a smaller fraction of models within the 401 

observational range in tropical regions than the Amount and Frequency metrics. In 402 

particular, fewer than 10% of CMIP6 models fall within the observational range for 403 

Unevenness and FracPRdays over some tropical oceanic regions (e.g., PITCZ, NEPO, 404 

SEPO, AITCZ, NEAO, SAO, and SIO).  405 

 406 

Examining the fraction of CMIP5 models falling within the range of observations, CMIP5 407 

models have a spatial pattern of model performance similar to that of CMIP6 models (see 408 

Fig. S2 in supplement), and the improvement from CMIP5 to CMIP6 seems subtle. We 409 

quantitatively assess the improvement from CMIP5 to CMIP6 by subtracting the 410 

percentage of CMIP5 from CMIP6 models falling within the range of observations (Fig. 411 
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10). For some metrics (e.g., Amount peak, Amount and Frequency P10, and Amount and 412 

Frequency P90) and for some tropical and subtropical regions  (e.g., SEA, EAS, SAS, 413 

ARP, and SAH), improvement is apparent. Compared to CMIP5, 5-25% more CMIP6 414 

models fall in the observational range in these regions. However, for the other metrics 415 

(e.g., Frequency peak, FracPRdays, SDII, Perkins score), CMIP6 models perform 416 

somewhat worse. Over some tropical and subtropical oceanic regions (e.g., PITCZ, 417 

NEPO, AITCZ, and NEAO), 5-25% more CMIP6 than CMIP5 models are out of the 418 

observational range. This result is from all available CMIP5 and CMIP6 models, so it may 419 

reflect the fact that some models are participated in only CMIP5 or CMIP6, but not both 420 

(see Table 2). To isolate improvements that may have occurred between successive 421 

generations of the same models, we also compared only the models that participated in 422 

both CMIP5 and CMIP6 (see Fig. S3). Overall, the spatial characteristics of the 423 

improvement/degradation in CMIP6 from CMIP5 is consistent, while more degradation is 424 

apparent when we compare this subset of models, especially over the tropical oceanic 425 

regions (e.g., PITCZ, AITCZ, NWPO, and SEPO).  426 

 427 

The second approach to account for discrepancies among observations in model 428 

performance evaluation is to count the number of models that are lower or higher than all 429 

satellite-based observations for each metric and each region. Figure 11 shows the spatial 430 

patterns of the model performance evaluation with each metric for CMIP6 models. 431 

Underestimation is indicated by a negative sign, while overestimation is indicated by a 432 

positive sign via the formulation described in Section 3.4. Amount peak is overall 433 

underestimated in most regions, indicating the amount distributions in most CMIP6 434 
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models are shifted to lighter precipitation compared to observations. In many regions, 435 

more than 50% of the CMIP6 models underestimate Amount peak. In particular, over 436 

many tropical and southern hemisphere ocean regions (e.g., PITCZ, AITCZ, EIO, SEPO, 437 

SAO, and SOO), more than 70% of the models underestimate the Amount peak. The 438 

underestimation of Amount peak is accompanied by overestimation of Amount P10 and 439 

underestimation of Amount P90. More than 70% of CMIP6 models overestimate Amount 440 

P10 in many oceanic regions; especially in the southern and northern Pacific and Atlantic, 441 

the southern Indian Ocean, and Southern Ocean more than 90% of the models 442 

overestimate the observed Amount P10. For Amount P90, it appears that many models 443 

fall within the observational range; however, observational range in Amount P90 (green 444 

boxes in Fig. 7c) is large and driven primarily by just one observational dataset (IMERG), 445 

especially in ocean regions. 446 

 447 

For the frequency-based metrics (i.e., peak, P10, and P90; Figs. 11d-f), CMIP6 models 448 

show similar bias characteristics to Amount metrics (Figs. 11a-c), although performance 449 

is better than for Amount metrics. Over some tropical (e.g., NWPO, PITCZ, and SWPO ) 450 

and Eurasia (e.g., EEU, WSB, and ESB) regions, less than 10% of models fall outside of 451 

the observed range. Unevenness and FracPRdays are severely overestimated in models. 452 

More than 90% of models overestimate the observed Unevenness (Fig. 11g) and 453 

FracPRdays (Fig. 11h) globally, especially over oceanic regions, consistent with 454 

Pendergrass and Knutti (2018). Unevenness (i.e., number of the wettest days for the half 455 

of annual precipitation) and FracPRdays (i.e., fraction of the number of annual 456 

precipitating days above 1mm/day) are highly correlated to each other; correlations 457 
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between metrics will be discussed later. SDII is underestimated in many regions globally, 458 

especially in some heavily-precipitating regions (e.g., PITCZ, AITCZ, EIO, SEA, NPO, 459 

NAO, SWPO, and SOO). For the Perkins score, model simulations have poorer 460 

performance in the tropics than in the mid-latitudes and polar regions. Performance by 461 

these various metrics is generally consistent with the often-blamed too-frequent light 462 

precipitation and too rare heavy precipitation in simulations. 463 

 464 

The characteristics of CMIP5 compared to CMIP6 simulations (Fig. S4) show little 465 

indication of improvement. Here we quantitatively evaluate the improvement in CMIP6 466 

from CMIP5 for each metric and region. Figure 12 shows the difference between CMIP5 467 

and CMIP6 in terms of the percentage of models that under- or over-estimate each metric. 468 

In mid-latitudes, there appears to have been an improvement in performance, however in 469 

the tropics, there appears to be more degradation. Over some heavily-precipitating 470 

tropical regions (e.g., PITCZ, AITCZ, EIO, and NWPO), 10-25% more models in CMIP6 471 

than in CMIP5 overestimate Amount P10, Unevenness, and FracPRdays and 472 

underestimate/underperform on Amount peak, SDII, and Perkins score. This indicates 473 

that CMIP6 models simulate more frequent light precipitation and less frequent heavy 474 

precipitation over the heavily-precipitating tropical regions. Over some mid-latitude land 475 

regions (e.g., EAS, ESB, RFE, and ENA), on the other hand, 5-20% more models in 476 

CMIP6 than in CMIP5 simulate precipitation distributions close to observations (i.e., less 477 

light precipitation and more heavy precipitation). To evaluate the improvement between 478 

model generation, we also compare only the models that participated in both CMIP5 and 479 

CMIP6 (Fig. S5) rather than all available CMIP5 and CMIP6 models. For the subset of 480 
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models participating in both generations, the improvement characteristics are similar for 481 

all models, although more degradation is exhibited over some tropical oceanic regions 482 

(e.g., PITCZ, NWPO, and SWPO). This also indicates that some models newly 483 

participating in CMIP6, and not in the CMIP5, have higher than average performance. 484 

 485 

4.3. Correlation between metrics 486 

Each precipitation distribution metric implemented in this study is chosen to target 487 

different aspects of the distribution of precipitation. To the extent that precipitation 488 

probability distributions are governed by a small number of key parameters (as argued by 489 

Martinez-Villalobos and Neelin 2019), we should expect additional metrics to be highly 490 

correlated. Figure 13 shows the global weighted average of correlation coefficients 491 

between the precipitation distribution metrics across CMIP5 and CMIP6 models. Higher 492 

correlation coefficients are found to be between Amount P90 and Frequency P90 (0.98) 493 

and between Amount P10 and Frequency P10 (0.67). This is expected because the 494 

amount and frequency distributions differ only by a factor of the precipitation rate (e.g., 495 

Pendergrass and Hartmann 2014). Another higher correlation coefficient is between 496 

Unevenness and FracPRdays (0.77), indicating that the number of the heaviest 497 

precipitating days for half of annual precipitation and the total number of annual 498 

precipitating days are related. Amount and Frequency peak metrics are negatively 499 

correlated to P10 metrics and positively correlated to P90 metrics, but the correlation 500 

coefficients are not very high (lower than 0.62). This is because the peak metrics focus 501 

on typical precipitation, rather than the light and heavy ends of the distribution that are 502 

the focus of P10 and P90 metrics. SDII is more negatively correlated with Amount P10 (-503 
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0.67) and positively correlated with Amount peak (0.61) and less so with Amount P90 504 

(0.48), implying that SDII is mainly influenced by weak precipitation amounts rather than 505 

heavy precipitation amounts. The Perkins score shows relatively high negative correlation 506 

with Unevenness (-0.62), FracPRdays (-0.59), and Amount P10 (-0.59). This indicates 507 

that the discrepancy between the observed and modeled frequency distributions is partly 508 

associated with the overestimated light precipitation in models. The correlation 509 

coefficients between the metrics other than those discussed above are lower than 0.6. 510 

While there is some redundant information within the collection of metrics included in our 511 

framework, we retain all metrics so that others can select an appropriate subset for their 512 

own application. This also preserves the ability to readily identify outlier behavior of an 513 

individual model across a wide range of regions and statistics. 514 

 515 

4.4. Influence of spatial resolution on metrics 516 

Many metrics for the precipitation distribution are sensitive to the spatial resolution  of 517 

the underlying data (e.g., Pendergrass and Knutti 2018; Chen and Dai 2019). Figure 14 518 

shows how our results (which are all based on data at 2° resolution) are impacted if we 519 

calculate the metrics from data coarsened to 4° grid instead. As expected, there is clearly 520 

some sensitivity to the spatial scale at which our precipitation distribution metrics are 521 

computed, but the correlation among datasets (both models and observations) between 522 

the two resolutions is very high, indicating that evaluations at either resolution should be 523 

consistent. At the coarser resolution, Amount peak and SDII are consistently smaller (as 524 

expected); Amount P10 and Frequency P10 tend to be smaller as well. Meanwhile, 525 

Unevenness and FracPRdays are consistently large (as expected); Amount P90, 526 
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Frequency P90, and Perkins score are generally larger as well. Chen and Dai (2019) 527 

discussed a grid aggregation effect that is associated with the increased probability of 528 

precipitation as the horizontal resolution becomes coarser. This effect is clearly evident 529 

with increased Unevenness (Fig. 14g), FracPRdays (Fig. 14h), and decreased SDII (Fig. 530 

14i) in coarser resolution. However, despite these differences, the relative model 531 

performance is not very sensitive to the spatial scale at which we apply our analysis. The 532 

correlation coefficients between results based on all data interpolated to 2° or 4° 533 

horizontal resolutions are above 0.9 for all of our distribution metrics. Conclusions on 534 

model performance are relatively insensitive to the target resolution.   535 

 536 

 537 

5. Discussion 538 

Analyzing the distribution of precipitation intensity lags behind temperature and even 539 

mean precipitation. Challenges include choosing appropriate metrics and analysis 540 

resolution to characterize this highly non-gaussian variable and interpreting model skills 541 

in the face of substantial observational uncertainty. Comparing results derived at 2o and 542 

4o horizontal resolution for CMIP class models, we find that the quantitative changes in 543 

assessed performance are highly consistent across models and consequently have little 544 

impact on our conclusions. More work is needed to determine how suitable this collection 545 

of metrics may be for evaluating models with substantially higher resolutions (e.g., 546 

HighResMIP, Haarsma et al. 2016). We note that more complex measures have been 547 

designed to be scale independent (e.g., Martinez-Villalobos and Neelin 2019; Martinez-548 
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Villalobos et al. 2022), and these may become increasingly important with continued 549 

interest in models developed at substantially higher resolution.  550 

 551 

Several recent studies suggest that the IMERG represents a substantial advancement 552 

over TRMM and likely the others (e.g., Wei et al. 2017; Khodadoust Siuki et al. 2017; 553 

Zhang et al. 2018), thus we rely on IMERG as the default in much of our analysis. 554 

However, we do not entirely discount the other products because the discrepancy 555 

between them provides a measure of uncertainty in the satellite-based estimates of 556 

precipitation. Our use of the minimum to maximum range of multiple observational 557 

products is indicative of their discrepancy, but not their uncertainty, and thus is a limitation 558 

of the current work and challenge that we hope will be addressed in the future.  559 

 560 

The common model biases identified in this study are mainly associated with the 561 

overestimated light precipitation and underestimated heavy precipitation. These biases 562 

persist from deficiencies identified in earlier generation models (e.g., Dai 2006), and as 563 

shown in this study there has been little improvement. One reason may be that these key 564 

characteristics of precipitation are not commonly considered in the model development 565 

process. Enabling modelers to more readily objectively evaluate simulated precipitation 566 

distributions could perhaps serve as a guide to improvement. The current study aims to 567 

provide a framework for objective evaluation of simulated precipitation distributions at 568 

regional scales. 569 

 570 
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Imperfect convective parameterizations are a possible cause of the common model 571 

biases in precipitation distributions (e.g., Lin et al. 2013; Kooperman et al. 2018; Ahn et 572 

al. 2018; Chen and Dai 2019; Chen et al. 2021; Martinez-Villalobos et al. 2022). Many 573 

convective parameterizations tend to produce too frequent and light precipitation, the so-574 

called “drizzling” bias (e.g., Dai 2006; Trenberth et al. 2017; Chen et al. 2021; Ma et al. 575 

2022), and it is likely due to a fact that the parameterized convection is more readily 576 

triggered than that in the nature (e.g., Lin et al. 2013; Chen et al. 2021). As model 577 

horizontal resolution increases, grid-scale precipitation processes can lead to resolving 578 

convective precipitation, as in so-called cloud resolving, storm resolving, or convective 579 

permitting models. Ma et al. (2022) compare several storm resolving models in 580 

DYAMOND to recent CMIP6 models with a convective parameterization and observe that 581 

the simulated precipitation distributions are more realistic in the storm resolving models. 582 

However, some of the storm resolving models still suffer from precipitation distribution 583 

errors, including bimodality in the frequency distribution. Further studies are needed to 584 

better understand the precipitation distribution biases in models. 585 

 586 

 587 

6. Conclusion 588 

We introduce a framework for regional scale evaluation of simulated precipitation 589 

distributions with 62 climate reference regions and 10 precipitation distribution metrics 590 

and apply it to evaluate the two most recent generations of climate model intercomparison 591 

simulations (i.e., CMIP5 and CMIP6).  592 

 593 
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To facilitate the regional scale for evaluation, regions where precipitation characteristics 594 

are relatively homogenous are identified. Our reference regions consist of existing IPCC 595 

AR6 climate reference regions, with additional subdivisions based on homogeneity 596 

analysis performed on precipitation distributions within each region. We partition the 597 

global domain into heavy, moderate, and light precipitation regions using K-means 598 

clustering of IMERG precipitation frequency and amount distributions. Our clustering 599 

analysis reveals that the IPCC AR6 land regions are reasonably homogeneous in 600 

precipitation character, while some ocean regions are relatively inhomogeneous, 601 

including large portions of both heavy and light precipitating areas. To define more 602 

homogeneous regions for the analysis of precipitation distributions, we have modified 603 

some ocean regions to better fit the clustering results while retaining the original IPCC 604 

AR6 land regions. The homogeneity between the region-averaged distribution and each 605 

grid cell’s distribution over the region is assessed by the three distinct similarity metrics 606 

(Perkins score, K-S test, and A-D test). The homogeneity is overall improved in the 607 

modified IPCC AR6 ocean regions. Although the clustering regions are obtained based 608 

on the IMERG annual precipitation, the improved homogeneity is fairly consistent across 609 

different datasets (TRMM, CMORPH, GPCP, PERSIANN, and ERA5) and seasons (MAM, 610 

JJA, SON, and DJF). Use of these more homogeneous regions enables us to extract 611 

more robust quantitative information from the distributions in each region. 612 

 613 

To form the basis for evaluation within each region, we use a set of metrics that are well-614 

established and easy to interpret, aiming to extract key characteristics from the 615 

distributions of daily precipitation frequency, amount, and cumulative fraction of 616 
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precipitation amount. We include the precipitation rate at the peak of the amount and 617 

frequency distributions (Kooperman et al., 2016; Pendergrass and Deser, 2017) and 618 

define several complementary metrics to measure the frequency and amount of 619 

precipitation under the 10th percentile (P10) and over the 90th percentile (P90). The 620 

distribution peak metrics assess whether the center of each distribution is shifted toward 621 

light or heavy precipitation, while the P10 and P90 metrics quantify the fraction of light 622 

and heavy precipitation in the distributions. The Perkins score is included to measure the 623 

similarity between the observed and modeled frequency distributions. Also, based on the 624 

cumulative fraction of precipitation amount, we implement the unevenness metric 625 

counting the number of wettest days for half of the annual precipitation (Pendergrass and 626 

Knutti 2018), the fraction of annual precipitating days above 1 mm/day, and the simple 627 

daily intensity index (Zhang et al. 2011). 628 

 629 

We apply the framework of regional scale precipitation distribution benchmarking to all 630 

available realizations of 25 CMIP5 and 41 CMIP6 models and 5 satellite-based 631 

precipitation products (IMERG, TRMM, CMORPH, GPCP, PERSIANN). The 632 

observational discrepancy is substantially larger compared to the models’ spread for 633 

some regions, especially for mid-latitude and polar regions and for some metrics such as 634 

Amount P90 and Frequency P90. We use two approaches to account for observational 635 

discrepancy in the model evaluation. One is based on the number of models within the 636 

observational range, and another is the number of models below/above all observations. 637 

In this way, we can draw some conclusions on the overall performance in the CMIP 638 

ensemble even in the presence of observations that may substantially disagree in certain 639 
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regions. Many CMIP5 and CMIP6 models underestimate the Amount and Frequency 640 

peaks and overestimate Amount and Frequency P10 compared to observations, 641 

especially in many mid-latitude regions where more than 50% of the models are out of 642 

the observational range. This indicates that models produce too frequent light 643 

precipitation, a bias that is also revealed by the overestimated FracPRdays and the 644 

underestimated SDII. Unevenness is the metric that models simulate the worst – in many 645 

regions more than 70-90% of the models are out of the observational range. Clear 646 

changes in performance between CMIP5 and CMIP6 are limited. Considering all metrics, 647 

the CMIP6 models show improvement in some mid-latitude regions, but in a few tropical 648 

regions the CMIP6 models actually show performance degradation.  649 

 650 

The framework presented in this study is intended to be a useful resource for model 651 

evaluation analysts and developers working towards improved performance for a wide 652 

range of precipitation characteristics. Basing the regions in part on homogeneous 653 

precipitation characteristics can facilitate identification of the processes responsible for 654 

model errors as heavy precipitating regions are generally dominated by convective 655 

precipitation, while the moderate and light precipitation regions are mainly governed by 656 

stratiform precipitation processes. Although the framework presented herein has been 657 

demonstrated with regional scale evaluation benchmarking, it can be applicable for 658 

benchmarking at larger scales and homogeneous precipitation regions. 659 

 660 

 661 
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Code Availability 662 

The benchmarking framework for precipitation distributions established in this study is 663 

available via the PCMDI Metrics Package (PMP, 664 

https://github.com/PCMDI/pcmdi_metrics, DOI: 10.5281/zenodo.7231033). This 665 

framework provides three tiers of area averaged outputs for i) large scale domain (Tropics 666 

and Extratropics with separated land and ocean) commonly used in the PMP, ii) large 667 

scale domain with clustered precipitation characteristics (Tropics and Extratropics with 668 

separated land and ocean, and separated heavy, moderate, and light precipitation 669 

regions), and iii) modified IPCC AR6 regions shown in this paper. 670 

 671 

 672 

Data Availability 673 

All of the data used in this study are publicly available. The satellite-based precipitation 674 

products used in this study (IMERG, TRMM, CMORPH, GPCP, and PERSIANN) and 675 

ERA5 precipitation product are available on the Obs4MIPs at https://esgf-676 

node.llnl.gov/projects/obs4mips/. The CMIP data is available on the ESGF at https://esgf-677 

node.llnl.gov/projects/esgf-llnl.  678 

 679 
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Tables 891 

 892 

 893 

 894 

Table 1. Satellite-based and reanalysis precipitation products used in this study. 895 

 896 

Product  Data source 
Coverage Resolution 

Refere
nce Domain  Period 

Horizont
al 

Freque
ncy  

IMERG 
NASA Integrated Multi-
satellitE Retrievals for GPM 
version 6 final run product 

Global, 
while 

beyond 
60°NS is 

incomplete  

2000.6-
present 

0.1° 
30 

minutes 

Huffma
n et al. 
(2020) 

TRMM 

NASA Tropical Rainfall 
Measuring Mission Multi-
satellite Precipitation 
Analysis 3B42 version 7 
product 

50°S-50°N 
1998.1-
2019.12 

0.25° 3 hours 
Huffma
n et al. 
(2007) 

CMORPH 
NOAA Bias-corrected 
Climate Prediction Center 
Morphing technique product  

60°S-60°N 
1998.1-
present 

0.073° 
30 

minutes 

Xie et 
al. 

(2017) 

GPCP 
NASA Global Precipitation 
Climatology Project 1DD 
version 1.3 

Global, 
while 

beyond 
40°NS is 

incomplete  

1996.10-
present 

1° 1 day 
Huffma
n et al. 
(2001) 

PERSIANN 

UC-IRVINE/CHRS 
Precipitation Estimation from 
Remotely Sensed 
Information using Artificial 
Neural Networks-Climate 
Data Record 

60°S-60°N  
1983.1-
present 

0.25° 1 day 
Ashouri 

et al. 
(2015) 

ERA5 
ECMWF Integrated 
Forecasting System Cy41r2 

Global 
1950.1–
present 

 0.25° 1 hour 
Hersba
ch et al. 
(2020) 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 
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 910 

Table 2. CMIP5 and CMIP6 models used in this study and their horizontal resolution. The 911 

number in parentheses indicates the number of realizations used for each model. Note 912 

that the horizontal resolution information is obtained from the number of grids, and it may 913 

vary slightly if the grid interval is not linear. 914 

 915 

Institute 

CMIP5 CMIP6 

Name 
Horizontal 

resolution [lon 
x lat °] 

Name 
Horizontal 

resolution [lon 
x lat °] 

CSIRO/BOM, 
Australia 

ACCESS1-0 (1) 1.875 x 1.241 ACCESS-CM2 (7) 1.875 x 1.25 

ACCESS1-3 (2) 1.875 x 1.241 ACCESS-ESM1-5 (10) 1.875 x 1.241 

BCC, China 
BCC-CSM1-1 (3) 1.875 x 1.241 BCC-CSM2-MR (3) 1.125 x 1.125 

BCC-CSM1-1-M (3) 1.125 x 1.125 BCC-ESM1 (3) 2.812 x 2.812 

BNU, China BNU-ESM (1) 2.812 x 2.812 N/A 

CAMS, China N/A CAMS-CSM1-0 (3)  

CCCma, 
Canada 

N/A CanESM5 (7) 2.812 x 2.812 

NCAR, USA CCSM4 (6) 1.25 x 0.938 

CESM2 (10) 1.25 x 0.938 

CESM2-FV2 (3) 2.5 x 1.875 

CESM2-WACCM (3) 1.25 x 0.938 

CESM2-WACCM-FV2 
(3) 

2.5 x 1.875 

 
CMCC, Italy 

 
CMCC-CM (3) 

 
0.75 x 0.75 

CMCC-CM2-HR4 (1) 1.25 x 0.938 

CMCC-CM2-SR5 (1) 1.25 x 0.938 

CNRM-
CERFACS, 
France 

N/A 

CNRM-CM6-1 (1) 1.406 x 1.406 

CNRM-CM6-1-HR (1) 0.5 x 0.5 

CNRM-ESM2-1 (1) 1.406 x 1.406 

CSIRO-
QCCCE, 
Australia 

CSIRO-Mk3-6-0 (10) 1.875 x 1.875 N/A 

DOE, USA N/A E3SM-1-0 (3) 1.0 x 1.0 

EC-Earth-
Consortium, 
European 
Community 

EC-Earth (1) 1.125 x 1.125 

EC-Earth3 (6) 0.703 x 0.703 

EC-Earth3-AerChem (1) 0.703 x 0.703 

EC-Earth3-CC (5)  

EC-Earth3-Veg (3) 0.703 x 0.703 

IAP-
CAS/THU, 
China 

FGOALS-g2 (1) 2.812 x 3.0 
FGOALS-f3-L (3) 1.0 x 1.0 

FGOALS-s2 (3) 2.812 x 1.667 

NOAA GFDL, 
USA 

GFDL-CM3 (5) 2.5 x 2.0 GFDL-CM4 (1) 1.0 x 1.0 

GFDL-HIRAM-C180 (2) 0.625 x 0.5 GFDL-ESM4 (1) 1.0 x 1.0 

GFDL-HIRAM-C360 (1) 0.312 x 0.25   

NASA GISS, 
USA 

 
GISS-E2-R (2) 

 
2.5 x 2.0 

N/A 

MOHC, UK HadGEM2-A (1) 1.875 x 1.241 
HadGEM3-GC31-LL (5) 1.875 x 1.25 

HadGEM3-GC31-MM (4) 0.833 x 0.556 

UKESM1-0-LL (1) 1.875 x 1.25 

IITM, India N/A IITM-ESM (1) 1.875 x 1.915 

INM, Russia INMCM4 (1) 2.0 x 1.5 
INM-CM4-8 (1) 2.0 x 1.5 

INM-CM5-0 (1) 2.0 x 1.5 
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IPSL, France  

IPSL-CM5A-LR (6) 3.75 x 1.875 

IPSL-CM6A-LR (22) 2.5 x 1.259 IPSL-CM5A-MR (3) 2.5 x 1.259 

IPSL-CM5B-LR (1) 3.75 x 1.875 

NIMS/KMA, 
Korea 

N/A KACE-1-0-G (1) 1.875 x 1.25 

MIROC, 
Japan 

MIROC5 (2) 1.406 x 1.406 

MIROC6 (10) 1.406 x 1.406 

MIROC-ES2L (3) 2.812 x 2.812 

MPI-M, 
Germany 

MPI-ESM-MR (3) 1.875 x 1.875 
MPI-ESM-1-2-HAM (3) 1.875 x 1.875 

MPI-ESM1-2-HR (3) 0.938 x 0.938 

MPI-ESM1-2-LR (3) 1.875 x 1.875 

MRI, Japan 

MRI-AGCM3-2H (1) 0.562 x 0.562 

MRI-ESM2-0 (3) 1.125 x 1.125 MRI-AGCM3-2S (1) 0.188 x 0.188 

MRI-CGCM3 (3) 1.125 x 1.125 

NCC, Norway N/A 
NorCPM1 (10) 2.5 x 1.875 

NorESM2-LM (2) 2.5 x 1.875 

SNU, Korea N/A SAM0-UNICON (1) 1.25 x 0.938 

AS-RCEC, 
Taiwan 

N/A TaiESM1 (1) 1.25 x 0.938 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 
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 941 

Table 3. Precipitation distribution metrics implemented in this study. 942 

 943 

Metric [unit] Definition Objectives Reference 

Amount peak 
[mm/day] 

Rain rate where the maximum 
rain amount occurs 

Characterize typical daily 
precipitation amount 

Pendergrass 
and Deser 
(2017) 

Amount P10  
[fraction] 

Fraction of rain amount in 
lower 10 percentile of OBS 
amount 

Measure the rain amount 
from light rainfall 

 

Amount P90  
[fraction] 

Fraction of rain amount in 
upper 90 percentile of OBS 
amount 

Measure the rain amount 
from heavy rainfall 

 

Frequency peak 
[mm/day] 

Rain rate where the maximum 
nonzero rain frequency 
occurs 

Characterize typical daily 
precipitation frequency 

Pendergrass 
and Deser 
(2017) 

Frequency P10  
[fraction] 

Fraction of rain frequency in 
lower 10 percentile of OBS 
amount 

Measure the frequency 
of light rainfall 

 

Frequency P90  
[fraction] 

Fraction of rain frequency in 
upper 90 percentile of OBS 
amount 

Measure the frequency 
of heavy rainfall 

 

Unevenness 
[days] 

Number of the wettest days 
for that constitute half of 
annual precipitation 

Measure uneven 
characteristic of daily 
precipitation 

Pendergrass 
and Knutti 
(2018) 

FracPRdays 
[fraction] 

Number of precipitating days 
(>=1mm/day) divided by total 
days a year 

Measure fraction of 
precipitating days a year  

 

SDII 
[mm/day] 

Annual total precipitation 
divided by the number of 
precipitating days 
(>=1mm/day) 

Measure daily 
precipitation intensity 

Zhang et al. 
(2011) 

Perkins score 
[unitless between 0-1] 

Sum of minimum values 
between two PDFs across all 
bins 

Measure similarity 
between two PDFs 

Perkins et al. 
(2007) 

 944 

 945 

 946 

 947 

 948 

 949 
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 950 

Table 4. List of climate reference regions used in this study. The new ocean regions 951 

defined in this study are highlighted in bold. 952 

 953 

1 GIC Greenland/Iceland   22 WAF Western-Africa   43 SAU S.Australia 

2 NWN N.W.North-America   23 CAF Central-Africa   44 NZ New-Zealand 

3 NEN N.E.North-America   24 NEAF N.Eastern-Africa   45 EAN E.Antarctica 

4 WNA W.North-America   25 SEAF S.Eastern-Africa   46 WAN W.Antarctica 

5 CNA C.North-America   26 WSAF W.Southern-Africa   47 ARO Arctic-Ocean 

6 ENA E.North-America   27 ESAF E.Southern-Africa   48 ARS Arabian-Sea 

7 NCA N.Central-America   28 MDG Madagascar   49 BOB Bay-of-Bengal 

8 SCA S.Central-America   29 RAR Russian-Arctic   50 EIO Equatorial-Indian-Ocean 

9 CAR Caribbean   30 WSB W.Siberia   51 SIO S.Indian-Ocean 

10 NWS N.W.South-America   31 ESB E.Siberia   52 NPO N.Pacific-Ocean 

11 NSA N.South-America   32 RFE Russian-Far-East   53 

NWP

O N.W.Pacific-Ocean 

12 NES N.E.South-America   33 WCA W.C.Asia   54 NEPO N.E.Pacific-Ocean 

13 SAM South-American-Monsoon   34 ECA E.C.Asia   55 PITCZ Pacific-ITCZ 

14 SWS S.W.South-America   35 TIB Tibetan-Plateau   56 SWPO S.W.Pacific-Ocean 

15 SES S.E.South-America   36 EAS E.Asia   57 SEPO S.E.Pacific-Ocean 

16 SSA S.South-America   37 ARP Arabian-Peninsula   58 NAO N.Atlantic-Ocean 

17 NEU N.Europe   38 SAS S.Asia   59 NEAO N.E.Atlantic-Ocean 

18 WCE West&Central-Europe   39 SEA S.E.Asia   60 AITCZ Atlantic-ITCZ 

19 EEU E.Europe   40 NAU N.Australia   61 SAO S.Atlantic-Ocean 

20 MED Mediterranean   41 CAU C.Australia   62 SOO Southern-Ocean 

21 SAH Sahara   42 EAU E.Australia         
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Figures 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

Figure 1. Schematics for precipitation distribution metrics. a) Amount or Frequency 964 

distribution as a function of rain rate. Peak metric gauges the rain rate where the 965 

maximum distribution occurs. P10 and P90 metrics respectively measure the fraction of 966 

the distribution lower 10 percentile and upper 90 percentile. Perkins score is another 967 

metric based on the frequency distribution to quantify the similarity between observed 968 

and modeled distribution. b) Fraction of cumulative distribution as a function of number of 969 

the wettest days. Unevenness gauges the number of the wettest days for half of annual 970 

precipitation. FracPRdays measures the fraction of the number of precipitating 971 

(≥1mm/day) days a year. SDII is designed to measure daily precipitation intensity by 972 

annual total precipitation divided by FracPRdays. 973 
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 987 

 988 

 989 

 990 

 991 

Figure 2. Spatial patterns of IMERG precipitation a) mean state and b) clustering for 992 

heavy, moderate, and light precipitating regions by K-means clustering with amount and 993 

frequency distributions. Precipitation c) amount and d) frequency distributions as a 994 

function of rain rate. Different colors indicate different clustering regions as the same 995 

with b). Thin and thick curves respectively indicate distributions at each grid and the 996 

cluster average. 997 
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 1010 

 1011 

 1012 

 1013 

 1014 

Figure 3. a) IPCC AR6 climate reference regions and b) modified IPCC AR6 climate 1015 

reference regions superimposed on the precipitation distributions clustering map shown 1016 

in Fig. 2b. Land regions are the same between a) and b), while some ocean regions are 1017 

modified. 1018 
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 1031 

 1032 

 1033 

Figure 4. Homogeneity estimated by a) Perkins score, b) K-S test, and c) A-D test 1034 

between the region averaged and each grid’s frequency distributions of IMERG 1035 

precipitation for the IPCC AR6 climate reference regions (upper) and the modified 1036 

ocean regions (bottom). Darker color indicates higher homogeneity across all panels. 1037 
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 1058 

 1059 

 1060 

 1061 

Figure 5. As in Fig. 4, but for different observational datasets with Perkins score. 1062 
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 1072 

 1073 

 1074 

 1075 

 1076 

Figure 6. Precipitation amount (upper), frequency (middle), and cumulative (bottom) 1077 

distributions for a-c) NWPO, b-f) SEPO, and g-j) ENA. Black, gray, blue, and red curves 1078 

indicate the satellite-based observations, reanalysis, CMIP5 models, and CMIP6 1079 

modes, respectively. Thin and thick curves for CMIP models respectively indicate 1080 

distributions for each model and multi-model average. Gray dotted lines in the 1081 

cumulative distributions indicate a fraction of 0.5. Note: all model output and 1082 

observations were conservatively regridded to 2° in the first step of analysis. 1083 
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 1095 

 1096 

 1097 

Figure 7. Precipitation distribution metrics for a) Amount peak, b) Amount P10, c) 1098 

Amount P90, d) Frequency peak, e) Frequency P10, f) Frequency P90, g) Unevenness, 1099 

h) FracPRdays, i) SDII, and j) Perkins score over the modified IPCC AR6 regions. 1100 

Black, gray, blue, and red curves indicate the satellite-based observations, reanalysis, 1101 

CMIP5 models, and CMIP6 modes, respectively. Thin and thick vertical marks for CMIP 1102 

models respectively indicate distributions for each model and multi-model average. 1103 

Open circle mark for CMIP models indicates the multi-model median. Green shade 1104 
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represents the range between the minimum and maximum values of satellite-based 1105 

observations. Blue and red shades respectively represent the range between 25th and 1106 

75th model values for CMIP 5 and 6 models. Y-axis labels are shaded with the three 1107 

colors as the same in Fig. 2b, indicating dominant precipitating characteristics. Note that 1108 

regions 1-46 are land and land-ocean mixed regions, and 47-62 are ocean regions. 1109 

 1110 

 1111 

 1112 

 1113 

Figure 7. (continued) 1114 

 1115 
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 1116 

 1117 

 1118 

 1119 

Figure 8. Observational discrepancies relative to spread in the multi-model ensemble for 1120 

a) Amount peak, b) Amount P10, c) Amount P90, d) Frequency peak, e) Frequency 1121 

P10, f) Frequency P90, g) Unevenness, h) FracPRdays, i) SDII, and j) Perkins score 1122 

over the modified IPCC AR6 regions. The observational discrepancy is calculated by 1123 

the standard deviation of satellite-based observations divided by the standard deviation 1124 

of CMIP 5 and 6 models for each metric and region.  1125 
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 1136 

 1137 

Figure 9. Percentage of CMIP6 models within range of the observational products for a) 1138 

Amount peak, b) Amount P10, c) Amount P90, d) Frequency peak, e) Frequency P10, f) 1139 

Frequency P90, g) Unevenness, h) FracPRdays, i) SDII, and j) Perkins score over the 1140 

modified IPCC AR6 regions. The observational range is between the minimum and 1141 

maximum values of five satellite-based products. Regions where the observational 1142 

spread is larger than model spread shown in Fig. 8 are stippled gray. 1143 

 1144 

 1145 

 1146 

 1147 

 1148 

 1149 

 1150 

 1151 

 1152 

57

https://doi.org/10.5194/egusphere-2022-1106
Preprint. Discussion started: 6 December 2022
c© Author(s) 2022. CC BY 4.0 License.



 

 1153 

 1154 

 1155 

 1156 

Figure 10. Improvement from CMIP 5 to 6 as identified by the percentage of models in 1157 

each multi-model ensemble that are within the observational min-to-max range. The 1158 

improvement is calculated by the CMIP6 percentage minus the CMIP5 percentage, so 1159 

that positive and negative values respectively indicate improvement and deterioration in 1160 

CMIP6. Regions where the observational spread is larger than model spread are 1161 

stippled gray. 1162 
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 1172 

 1173 

 1174 

 1175 

Figure 11. Percentage of CMIP6 models underestimating or overestimating 1176 

observations for a) Amount peak, b) Amount P10, c) Amount P90, d) Frequency peak, 1177 

e) Frequency P10, f) Frequency P90, g) Unevenness, h) FracPRdays, i) SDII, and j) 1178 

Perkins score over the modified IPCC AR6 regions. The criteria for underestimation and 1179 

overestimation are respectively defined by minimum and maximum values of satellite-1180 

based observations shown in Fig. 7. Positive and negative values respectively represent 1181 

overestimation and underestimation by a formulation of (𝑛𝑂 − 𝑛𝑈)/𝑛𝑇 where 𝑛𝑂, 𝑛𝑈, 𝑛𝑇 1182 

are respectively the number of overestimated models, underestimated models, and total 1183 

models. 1184 
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 1192 

 1193 

Figure 12. Improvement from CMIP 5 to 6 in the percentage of underestimated or 1194 

overestimated models. The improvement is calculated by the absolute value of CMIP5 1195 

percentage minus the absolute value of CMIP6 percentage, so that positive and 1196 

negative values respectively indicate improvement and deterioration in CMIP6. 1197 
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 1210 

 1211 

Figure 13. Correlation between precipitation distribution metrics across CMIP 5 and 6 1212 

model performances. The correlation coefficients are calculated for the modified IPCC 1213 

AR6 regions and then area-weighted averaged globally. 1214 
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 1223 

 1224 

Figure 14. Scatterplot between 2° and 4° interpolated horizontal resolutions in 1225 

evaluating precipitation distribution metrics for a) Amount peak, b) Amount P10, c) 1226 

Amount P90, d) Frequency peak, e) Frequency P10, f) Frequency P90, g) Unevenness, 1227 

h) FracPRdays, i) SDII, and j) Perkins score. The metric values are calculated for the 1228 

modified IPCC AR6 regions and then weighted averaged globally. Black, gray, blue, and 1229 

red marks indicate the satellite-based observations, reanalysis, CMIP5 models, and 1230 

CMIP6 modes, respectively. The number in the upper right of each panel is the 1231 

correlation coefficient between the metric values in 2° and 4° resolutions across all 1232 

observations and models. 1233 

 1234 
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